Species-dependent effects of adenosine on heart rate and atrioventricular nodal conduction. Mechanism and physiological implications.

نویسندگان

  • G Froldi
  • L Belardinelli
چکیده

This study 1) compares the negative chronotropic and dromotropic actions of adenosine in guinea pig, rat, and rabbit hearts; 2) investigates the mechanism(s) for the different responses; and 3) determines the physiological implications. Isolated perfused hearts were instrumented for measurement of atrial rate and atrioventricular (AV) nodal conduction time. Differences in metabolism of adenosine were determined in the absence and presence of dipyridamole (nucleoside uptake blocker) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA, adenosine deaminase inhibitor). Dipyridamole plus EHNA decreased adenosine's EC50 for the negative dromotropic effect by 14-fold in guinea pig heart and 1.6-fold in rat heart. This is consistent with the greater number of [3H]nitrobenzylthioinosine binding sites measured in membranes from guinea pig (1,231 +/- 68 fmol/mg protein) compared with rat (302 +/- 31 fmol/mg protein) and rabbit (260 +/- 28 fmol/mg protein) atria. The potency of adenosine to slow atrial rate and prolong AV nodal conduction time was greater in guinea pig than in rat or rabbit hearts. This rank order of potency correlated well with the number of binding sites for the specific adenosine receptor radioligand 125I-aminobenzyladenosine in guinea pig (102 +/- 13 fmol/mg protein), rat (11 +/- 0.5 fmol/mg protein), and rabbit (8 +/- 1 fmol/mg protein) atrial membranes. Hypoxia increased the rate of adenosine release by severalfold and caused slowing of heart rate and AV block. In spontaneously beating hearts, the main effect of hypoxia was a slowing of ventricular rate, which in the guinea pig heart was due to AV block and in the rat heart to atrial slowing. In atrial paced hearts, hypoxia caused a marked prolongation of AV nodal conduction time in guinea pig (39 +/- 4 msec) and rabbit (29 +/- 5 msec) hearts, but only small effect in rat hearts (10 +/- 2 msec). The differences in response to hypoxia could be accounted for by the species-dependent differences in the 1) amount of adenosine released and metabolized, 2) sensitivity of the hearts to adenosine, and 3) dependency of AV nodal conduction on atrial rate. The findings indicate that the results from physiological or pharmacological studies on adenosine in one species may not be applicable to others, and the ultimate effect of adenosine and hypoxia is to slow ventricular rate.

منابع مشابه

Modulation of extracellular atrioventricular node field potential pattern and ventricular rhythm by morphine in experimental atrial fibrillation in isolated rabbit heart

Introduction: Endorphins are produced by cardiomyocytes, and exert different effects on the heart. The aim of the present study is to assess morphine effects on extracellular atrioventricular (AV) node field potential pattern and ventricular rhythm of isolated rabbit heart during experimental atrial fibrillation (AF). Methods: Effects of different concentrations of morphine (10, 20, 50 and 1...

متن کامل

Heart Rate and Atrioventricular Nodal Conduction Mechanism and Physiological Implications

This study 1) compares the negative chronotropic and dromotropic actions of adenosine in guinea pig, rat, and rabbit hearts; 2) investigates the mechanism(s) for the different responses; and 3) determines the physiological implications. Isolated perfused hearts were instrumented for measurement of atrial rate and atrioventricular (AV) nodal conduction time. Differences in metabolism of adenosin...

متن کامل

نقش آدنوزین در اثرات محافظتی سیمواستاتین بر خواص گره دهلیزی- بطنی در مدل فیبریلاسیون دهلیزی ایجاد شده در قلب ایزوله خرگوش

Background: The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhi-bitors (statins) have revolutionized the treatment of hypercholesterolemia. Some evide-nce indicated the role of nodal refractoriness and concealed conduction in anticipating the ventricular rate during atrial fibrillation. Recent evidence has indicated that statins can reduce the incidence of both supraventricular a...

متن کامل

New manifestations of electrophysiological remodeling of heart during experimental model of atrial fibrillation in cirrhotic rat isolated heart

Introduction: The present study is aimed to evaluate electrophysiological remodeling of atrioventricular (AV) node and ventricular conduction during experimental atrial fibrillation (AF) model in isolated heart of cirrhotic rats. Methods: Cirrhosis-induced electrophysiological remodeling was evaluated in 24 isolated retrogradely perfused rat hearts in 2 groups (control and cirrhotic). Cirrho...

متن کامل

Effects of adenosine on rate-dependent atrioventricular nodal function. Potential roles in tachycardia termination and physiological regulation.

BACKGROUND Adenosine is well known to depress atrioventricular (AV) nodal conduction, but the potential interactions between adenosine and functional AV nodal properties have not been explored. The purpose of the present study was to determine (1) whether exogenous adenosine modifies the rate-dependent properties of the AV node, (2) to what extent such changes underlie the actions of adenosine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Circulation research

دوره 67 4  شماره 

صفحات  -

تاریخ انتشار 1990